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Our Model: The Vlasov-Maxwell-System

Plasma Physics is reasonably described by the Vlasov(-Boltzmann) equation
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Variations of the Problem

• Keep the collision term→ Vlasov-Boltzmann-Maxwell-System
• Add source / sink term for e.g. fusion
• Electrostatic approximation→ Vlasov-Poisson-System
• Remove radiation→ Vlasov-Darwin-System
• Treat dielectrics→ treat ~E/~D and ~B/~H using materials model

We have a complete and self-consistent mathematical model. Can we go home now?
No! The equations are unsolvably hard in the general case.
This is why we (have to) do numerics.
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Euler vs Lagrange

There is two opposing world views

Eulerian (Stream gauges)
• There is a fixed spatial reference
• We impose a (structured) grid
• Changes is time are for a given

location . . .
• . . . but might be because a feature

moves, or . . .
• . . . because the feature changes in

time.

Lagrangian (Rubber ducks)
• Particles have defined identities
• and we just follow them around and

look at their immediate environment
• Changes are for a given particle. . .
• . . . and are due to temporal evolution of

features, but . . .
• . . . the particle might be at different

locations over time.

Mixtures such as moving mesh codes and semi-Lagrangian codes of course exist.
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Magneto-Hydro-Dynamics (MHD)

• Assume a distribution function with a bunch of parameters (e.g.M(n, ~u,T ))

• Take moments of the Vlasov equation

• Sum over all species (at least electrons and ions)

• Evolution equation for nth moment (ρ, ~u) contains n + 1th moment (~u,
↔

P)

• Stop after finite number of moments (5, 10) and close with some closure scheme

• Discretize resulting equations (using finite volume or spectral methods)

Biggest advantages:

Biggest limitations:
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• Stop after finite number of moments (5, 10) and close with some closure scheme

• Discretize resulting equations (using finite volume or spectral methods)

Biggest advantages:
• Able to describe large scale system
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• Mature codes available

Biggest limitations:
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• Take moments of the Vlasov equation
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• Evolution equation for nth moment (ρ, ~u) contains n + 1th moment (~u,
↔

P)

• Stop after finite number of moments (5, 10) and close with some closure scheme

• Discretize resulting equations (using finite volume or spectral methods)

Biggest advantages:

Biggest limitations:
• Changes in the (type of the) distribution function are lost

• All species are the same temperature

• Needs good closure model
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Particle-in-Cell (PiC)

• Sample distribution function fs using macro particles
• Derive evolution equations for those
• Discretize Maxwell’s equations using Finite-Difference-Time-Domain (FDTD)
• Close using deposition schemes that compute ρ and ~ from the macro particles

Biggest advantages:

Biggest limitations:
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Particle-in-Cell (PiC)

• Sample distribution function fs using macro particles
• Derive evolution equations for those
• Discretize Maxwell’s equations using Finite-Difference-Time-Domain (FDTD)
• Close using deposition schemes that compute ρ and ~ from the macro particles

Biggest advantages:

Biggest limitations:
• Has to resolve micro-physical scales for stability
• Noise level due to limited particle number
• Huge computational effort
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Full Vlasov

• Discretize phase space
• Find evolution equation for the discrete representation of fs
• Discretize Maxwell’s equations in a “compatible” way

Biggest advantages:
• Captures changes in the distribution functions
• Captures the micro physics
• Very low noise level

Biggest limitations:
• 6d grids require tons of memory, even at poor resolution
• Tends to generate fine structures in phase space that need to be removed without being

too diffusive
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Hydro-Dynamics (HD)

• The ~B → 0 limit of MHD

Biggest advantages:
• When you don’t have to worry about ∇ · ~B = 0, you can treat

the remaining physics much better
• Good for very large systems or low degree of ionization
• Many mature codes

Biggest limitations:
• Ignore magnetic fields, hope for the best
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Radiation-Magneto-Hydro-Dynamics (RMHD)

• Include some model for the electromagnetic waves that are not directly resolved
• Needs numerical schemes for radiation transport in the optically thin/thick regime
• Popular at LANL

Biggest advantages:
• Include the energy transport and pressure of radiation
• Automatically produces synthetic radiation observables

Biggest limitations:
• Treatment of I(~x , ~Ω, ν, t) is hard
• Codes tend to be export controlled
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Two-Fluid MHD / Multi-Fluid MHD

• Retain separate sets of fluid equations for electrons, protons. (heavier) ions, dust, . . .
• Compute (net) ρ and (total) ~
• Species are coupled through ~E and ~B that is seen by all species
• Possibly source/sink terms for reactions (chemical, fusion, dust aggregation, . . . )

Biggest advantages:
• Useful for analytic calculations
• Better electric field model
• Includes the Hall effect and diamagnetic drift

Biggest limitations:
• Electrons set small spatial and temporal scale
• Interactions between species can be very complicated

(entire reaction networks with high rates)

Los Alamos National Laboratory 2020-05-15 | 11



Two-Fluid MHD / Multi-Fluid MHD

• Retain separate sets of fluid equations for electrons, protons. (heavier) ions, dust, . . .
• Compute (net) ρ and (total) ~
• Species are coupled through ~E and ~B that is seen by all species
• Possibly source/sink terms for reactions (chemical, fusion, dust aggregation, . . . )

Biggest advantages:
• Useful for analytic calculations
• Better electric field model
• Includes the Hall effect and diamagnetic drift

Biggest limitations:
• Electrons set small spatial and temporal scale
• Interactions between species can be very complicated

(entire reaction networks with high rates)

Los Alamos National Laboratory 2020-05-15 | 11



Two-Fluid MHD / Multi-Fluid MHD

• Retain separate sets of fluid equations for electrons, protons. (heavier) ions, dust, . . .
• Compute (net) ρ and (total) ~
• Species are coupled through ~E and ~B that is seen by all species
• Possibly source/sink terms for reactions (chemical, fusion, dust aggregation, . . . )

Biggest advantages:
• Useful for analytic calculations
• Better electric field model
• Includes the Hall effect and diamagnetic drift

Biggest limitations:
• Electrons set small spatial and temporal scale
• Interactions between species can be very complicated

(entire reaction networks with high rates)

Los Alamos National Laboratory 2020-05-15 | 11



Hybrid-Kinetic Simulations (Hybrid Codes)

• Fluid equations for some species (often electrons, often without inertia)
• Fully-kinetic for other species (using PiC methods)
• Maxwell’s equations usually radiation-free (Darwin or Electrostatic)
• Field Solver often implicit, ~E(tn+1/2) problem

Biggest advantages:
• Retains all the kinetic physics of (multiple) ion species
• Much more efficient then PiC, especially in cold plasma
• Longer time scale, large spatial scales than PiC

Biggest limitations:
• Whistler waves are ω ∝ k2 without inertia, make problem stiff
• Problems at plasma-vacuum boundaries and large density jumps
• Elliptic field solvers tend to limit scalability
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Smoothed Particle Hydrodynamics (SPH)

• Sample MHD with little chunks
• Derive equations of motion for these “particles”
• Estimate density by averaging over all neighboring particles within a smoothing length
• Might use a grid or kd-tree to quickly find neighboring particles

Biggest advantages:
• Automatic resolution adaptation. Regions with more particles resolve finer features
• Handles vacuum and low density regions well
• No grid anisotropy

Biggest limitations:
• When particles “stack” you get pairing instability
• Can be noisy and surface reconstruction can be difficult
• Long-range forces need extra treatment
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Smoothed particle MHD (SPMHD)

• Surprisingly this exists
• Each particle carries a magnetic field
• Update equations for ~x , ~v and ~B using quantities interpolated from neighbors

Biggest advantages:
• Automatic resolution adaptation. Regions with more particles resolve finer features
• No grid anisotropy

Biggest limitations:
• Ensuring ∇ · ~B = 0 usually leads to rather diffusive schemes
• Basically no existing codes for the community
• What is the magnetic field in vacuum?
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Electron MHD (eMHD)

• Fluid equations for electrons
• Ions are immobile

Biggest advantages:
• Full anisotropic pressure tensor
• Electron inertia is retained
• Other terms (e.g. ∂ ne/∂t) can be retained

Biggest limitations:
• Electron distribution function must remain close to Maxwellian
• Only useful for limited timescales
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Vlasov-Hybrid-Simulations (VHS)

• Use macro particles for time evolution
• Reconstruct fs on a phase space grid in each timestep
• Take numerical integrals to compute moments of fs
• Update fields (either electrostatic or electromagnetic)
• Extension to 1d3v Darwin should be useful, relatively easy and worth a publication

Biggest advantages:
• Able to simulate VHF propagation with realistic parameters
• Non recurrence problem, low diffusivity in phase space
• Very low noise

Biggest limitations:
• Phase space grid requires a lot of memory
• Computationally expensive
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Gyro-kinetic Approximation (GK)

• Assume that particles are very magnetized
• Average over the fast gyration
• Phase space reduces to 5d

Biggest advantages:
• Very good for fusion research, up to full device simulations
• Allows 3d2v simulation, which have feasible memory usage
• Allows arbitrary gyrotropic distribution functions

Biggest limitations:
• Need to manually include Finite Larmor Radius effects (FLR)
• Derivation of evolution equations tricky
• Needs strong magnetic fields
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Direct-Stimulation-Monte-Carlo (DSMC)

• Decent simulation of collisions
• Often no fields (or only gravity, or only fixed ~E and ~B)

Biggest advantages:
• Very good at rarefied gas flows, contaminant transport, space craft charging
• The correct model when the system size is similar to the mean free path
• Can handle vacuum and changing ionization fraction

Biggest limitations:
• Unaffordable in the collisional regime
• Unnecessary in the collisionless regime
• Limited to subsonic flows
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Lattice-Boltzmann-Method (LBM)

• Quantized velocities and spatial position
• Simple collision model
• Usually no fields (or only gravity)

Biggest advantages:
• Good with complicated boundary conditions (porous media)
• Good at multi-phase simulations
• Easy to parallelize

Biggest limitations:
• No long-range fields due to charged particles
• Limited to subsonic flows
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Specialized Codes

• Dispersion solver to find ω(~k)

• Equilibrium solver

I am sure there is other methods I did not mention.
Sorry if I missed your favorite one.
Please tell me about it. Seriously!
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Time for Questions

Thanks for listening!

Are there questions or comments?
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